Нормативні документи

програма з математики для 5-9 класів
програма з математики для 10-11 класів рівень стандарту
програма з математики для 10-11 класів академічний рівень


Критерії оцінювання навчальних досягнень учнів
з математики

До навчальних досягнень учнів з математики, які підлягають оцінюванню, належать:

- теоретичні знання, що стосуються математичних понять, тверджень, теорем, властивостей, ознак, методів та ідей математики;
- знання, що стосуються способів діяльності, які можна подати у вигляді системи дій (правила, алгоритми);
- здатність безпосередньо здійснювати уже відомі способи діяльності відповідно до засвоєних правил, алгоритмів (наприклад, виконувати певне тотожне перетворення виразу, розв’язувати рівняння певного виду, виконувати геометричні побудови, досліджувати функцію на монотонність, розв’язувати текстові задачі розглянутих типів тощо);
- здатність застосовувати набуті знання і вміння для розв’язання навчальних і практичних задач, коли шлях, спосіб такого розв’язання потрібно попередньо визначити (знайти) самому.
Відповідно до ступеня оволодіння зазначеними знаннями і способами діяльності виокремлюються такі рівні навчальних досягнень школярів з математики:
Початковий рівень - учень (учениця) називає математичний об’єкт (вираз, формули, геометричну фігуру, символ), але тільки в тому випадку, коли цей об’єкт (його зображення, опис, характеристика) запропоновано йому (їй) безпосередньо; за допомогою вчителя виконує елементарні завдання.
Середній рівень - учень (учениця) повторює інформацію, операції, дії, засвоєні ним (нею) у процесі навчання, здатний(а) розв’язувати завдання за зразком.
Достатній рівень - учень (учениця) самостійно застосовує знання в стандартних ситуаціях, вміє виконувати математичні операції, загальні методи і послідовність (алгоритм) яких йому(їй) знайомі, але зміст та умови виконання змінені.
Високий рівень - учень (учениця) здатний(а) самостійно орієнтуватися в нових для нього(неї) ситуаціях, складати план дій і виконувати його; пропонувати нові, невідомі йому(їй) раніше розв’язання, тобто його(її) діяльність має дослідницький характер.
Оцінювання якості математичної підготовки учнів з математики здійснюється в двох аспектах: рівень оволодіння теоретичними знаннями та якість практичних умінь і навичок, здатність застосовувати вивчений матеріал під час розв’язування задач і вправ.


Рівні навчальних досягнень
Бали
Критерії оцінювання навчальних досягнень
I. Початковий

1
Учень (учениця) розпізнає один із кількох запропонованих математичних об’єктів (символів, виразів, геометричних фігур тощо), виділивши його серед інших; читає і записує числа, переписує даний математичний вираз, формулу; зображує найпростіші геометричні фігури (малює ескіз)
2
Учень (учениця) виконує однокрокові дії з числами, найпростішими математичними виразами; впізнає окремі математичні об’єкти і пояснює свій вибір
3
Учень (учениця) порівнює дані або словесно описані математичні об’єкти за їх суттєвими властивостями; за допомогою вчителя виконує елементарні завдання
II. Середній
4
Учень (учениця) відтворює означення математичних понять і формулювання тверджень; називає елементи математичних об’єктів; формулює деякі властивості математичних об’єктів; виконує за зразком завдання обов'язкового рівня
5
Учень (учениця) ілюструє означення математичних понять, формулювань теорем і правил виконання математичних дій прикладами із пояснень вчителя або підручника; розв’язує завдання обов'язкового рівня за відомими алгоритмами з частковим поясненням
6
Учень (учениця) ілюструє означення математичних понять, формулювань теорем і правил виконання математичних дій власними прикладами; самостійно розв’язує завдання обов'язкового рівня з достатнім поясненням; записує математичний вираз, формулу за словесним формулюванням і навпаки
III. Достатній
7
Учень (учениця) застосовує означення математичних понять та їх властивостей для розв’язання завдань у знайомих ситуаціях; знає залежності між елементами математичних об’єктів; самостійно виправляє вказані йому (їй) помилки; розв’язує завдання, передбачені програмою, без достатніх пояснень
8
Учень (учениця) володіє визначеним програмою навчальним матеріалом; розв’язує завдання, передбачені програмою, з частковим поясненням; частково аргументує математичні міркування й розв’язування завдань
9
Учень (учениця): вільно володіє визначеним програмою навчальним матеріалом; самостійно виконує завдання в знайомих ситуаціях з достатнім поясненням; виправляє допущені помилки; повністю аргументує обґрунтування математичних тверджень; розв’язує завдання з достатнім поясненням
IV. Високий
10
Знання, вміння й навички учня (учениці) повністю відповідають вимогам програми, зокрема: учень (учениця) усвідомлює нові для нього (неї) математичні факти, ідеї, вміє доводити передбачені програмою математичні твердження з достатнім обґрунтуванням; під керівництвом учителя знаходить джерела інформації та самостійно використовує їх; розв’язує завдання з повним поясненням і обґрунтуванням
11
Учень (учениця) вільно і правильно висловлює відповідні математичні міркування, переконливо аргументує їх; самостійно знаходить джерела інформації та працює з ними; використовує набуті знання і вміння в незнайомих для нього (неї) ситуаціях; знає, передбачені програмою, основні методи розв’язання завдання і вміє їх застосовувати з необхідним обґрунтуванням
12
Учень (учениця) виявляє варіативність мислення і раціональність у виборі способу розв’язання математичної проблеми; вміє узагальнювати й систематизувати набуті знання; здатний(а) до розв’язування нестандартних задач і вправ




 Математика
     У 2015/2016 навчальномуроці 7 класи загальноосвітніхнавчальних закладів продовжать навчання за програмою «Математика. Навчальна програма для учнів 5– 9 класів загальноосвітніх навчальних закладів» (авт. М. Бурда, Ю. Мальований, Є. Нелін, Д. Номіровський, А. Паньков, Н. Тарасенкова, М. Чемерис, М. Якір), затвердженою наказом Міністерства освіти і науки України від 29.05.2015 № 585 «Про затвердження змін до навчальних програм для загальноосвітніх навчальних закладів ІІ ступеня» та розміщеною на сайті Міністерства освіти і науки України (www.mon.gov.ua/ua//activity/education/56/general-secondary-education/educati onal_programs/1349869088/). Звертаємо увагу, що до навчальної програми з математики внесено зміни, викликані потребою розвантаження навчального матеріалу. Так, з курсу математики в 5-6 класах вилучено елементи комбінаторики й теорії ймовірностей. Учні не зобов’язані більше набувати умінь розв’язувати найпростіші комбінаторні задачі шляхом розгляду можливих варіантів та на прикладах пояснювати поняття випадкової події та ймовірності появи випадкової події. Програма для 7 класу зазнала таких змін: із курсу геометрії вилучено задачі на побудову, у зв'язку з цим перерозподілено час між темами. Також спрощено державні вимоги до рівня загальноосвітньої підготовки учнів. За Типовими навчальними планами загальноосвітніх навчальних закладів, затвердженими наказом МОН від 29.05.2014 № 664, на вивчення математики в 7 класі відводиться 4 години на тиждень (2 години алгебри і 2 години геометрії). В основу побудови змісту й організації процесу навчання математики в 7 класі покладено компетентнісний підхід, відповідно до якого кінцевим результатом навчання предмета є сформовані певні компетентності учнів. Їх сутнісний опис подано в програмі в розділі «Державні вимоги до рівня загальноосвітньої підготовки учнів». Починаючи з 7 класу, вивчаються два математичних курси: алгебра і геометрія. Основними завданнями курсу алгебри є формування умінь виконання тотожних перетворень цілих і дробових виразів, розв’язування рівнянь і нерівностей та їх систем, достатніх для вільного їх використання у вивченні математики і суміжних предметів, а також для практичних застосувань математичного знання. Важливе завдання полягає в залученні учнів до використання рівнянь і функцій як засобів математичного моделювання реальних процесів і явищ, розв’язування на цій основі прикладних та інших задач. У процесі вивчення курсу посилюється роль обґрунтувань математичних тверджень, індуктивних і дедуктивних міркувань, формування різноманітних алгоритмів, що має сприяти розвитку логічного мислення і алгоритмічної культури школярів. Основу курсу становлять перетворення цілих раціональних виразів. Важливо забезпечити формування умінь школярів вільно виконувати основні види перетворень таких виразів, що є передумовою подальшого успішного засвоєння курсу та використання математичного апарату під час вивчення інших шкільних предметів. Істотного розвитку набуває змістова лінія рівнянь та нерівностей. Відомості про рівняння доповнюються поняттям рівносильних рівнянь. Процес розв’язування рівняння трактується як послідовна заміна даного рівняння рівносильними йому рівняннями. На основі узагальнення відомостей про рівняння, здобутих у попередні роки, вводиться поняття лінійного рівняння з однією змінною. Розглядаються системи лінійних рівнянь з двома змінними. Значне місце відводиться застосуванню рівнянь до розв’язування різноманітних задач. Важливе значення надається формуванню умінь застосовувати алгоритм розв’язування задачі за допомогою рівняння. У 7 класі вводиться одне з фундаментальних математичних понять — поняття функції. Також вводиться поняття лінійної функції та її графіка. Ці відомості використовуються для графічного ілюстрування розв’язування лінійного рівняння з однією змінною, а також системи двох лінійних рівнянь з двома змінними. Функціональна лінія пронизує весь курс алгебри основної школи і розвивається в тісному зв’язку з тотожними перетвореннями, рівняннями і нерівностями. Властивості функцій, як правило, встановлюються за їх графіками, тобто на основі наочних уявлень, і лише деякі властивості обґрунтовуються аналітично. У міру оволодіння учнями теоретичним матеріалом кількість властивостей, що підлягають вивченню, поступово збільшується. Під час вивчення функцій значна увага має відводиться формуванню умінь будувати й аналізувати графіки функцій, характеризувати за графіками функцій процеси, які вони описують, спроможності розуміти функцію як певну математичну модель реального процесу. Головна лініякурсу геометрії— геометричні фігури та їх властивості. Основними поняттями курсу є точка, пряма, площина, належати, лежатиміж. Перші три поняття — це основні геометричні фігури, а два останніх — основні відношення. Це неозначувані поняття — для них не формулюються означення, але їх зміст розкривається через опис, показ, характеристику. Інші поняття курсу визначаються, а їх властивості встановлюються шляхом доказових міркувань. Учень має усвідомити, що під час доведення теорем можна користуватися означеннями, аксіомами і раніше доведеними теоремами. Фігури, що вивчаються у 7 класі, — точка, пряма, відрізок, промінь, кут, трикутник, коло, круг. Учень повинен формулювати означення планіметричних фігур та їх елементів, зображати їх на малюнку, класифікувати. У 7 класі учні ознайомлюються з основами геометричної науки — означеннями, аксіомами, теоремами, основними методами доведення теорем. Поглиблюються і систематизуються відомості про геометричні величини: довжину, градусну міру кута, площу, об’єм. У навчально-виховному процесі можна використовувати підручники з алгебри та геометрії для 7 класів загальноосвітніх навчальних закладів, що видані в попередні роки і мають відповідний гриф Міністерства освіти і науки України. При цьому слід зважати на особливості нової програми, оскільки вона відрізняється порядком викладення матеріалу і певними спрощеннями. Під час підготовки вчителів до уроків радимо використовувати періодичні фахові видання: «Математика в рідній школі», «Математика», «Математика в школах України». 





Немає коментарів:

Дописати коментар